Gamete signalling underlies the evolution of mating types and their number
نویسندگان
چکیده
The gametes of unicellular eukaryotes are morphologically identical, but are nonetheless divided into distinct mating types. The number of mating types varies enormously and can reach several thousand, yet most species have only two. Why do morphologically identical gametes need to be differentiated into self-incompatible mating types, and why is two the most common number of mating types? In this work, we explore a neglected hypothesis that there is a need for asymmetric signalling interactions between mating partners. Our review shows that isogamous gametes always interact asymmetrically throughout sex and argue that this asymmetry is favoured because it enhances the efficiency of the mating process. We further develop a simple mathematical model that allows us to study the evolution of the number of mating types based on the strength of signalling interactions between gametes. Novel mating types have an advantage as they are compatible with all others and rarely meet their own type. But if existing mating types coevolve to have strong mutual interactions, this restricts the spread of novel types. Similarly, coevolution is likely to drive out less attractive mating types. These countervailing forces specify the number of mating types that are evolutionarily stable.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
منابع مشابه
Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types.
The advantage of sex has been among the most debated issues in biology. Surprisingly, the question of why sexual reproduction generally requires the combination of distinct gamete classes, such as small and large gametes, or gametes with different mating types, has been much less investigated. Why do systems with alternative gamete classes (i.e. systems with either anisogamy or mating types or ...
متن کاملSex ratio and gamete size across eastern North America in Dictyostelium discoideum, a social amoeba with three sexes.
Theory indicates that numbers of mating types should tend towards infinity or remain at two. The social amoeba, Dictyostelium discoideum, however, has three mating types. It is therefore a mystery how this species has broken the threshold of two mating types, but has not increased towards a much higher number. Frequency-dependent selection on rare types in combination with isogamy, a form of re...
متن کاملEvolutionary Branching and the Evolution of Anisogamy
Populations of most sexual species are anisogamous, i.e. they consist of two types of individuals producing gametes of different size. The evolution of anisogamy is usually explained with models that either rely on mutations with large effects or are based on populations with pre-existing mating types. Here we present a model for the evolution of anisogamy that does not rely on either of those ...
متن کاملSelection for high gamete encounter rates explains the success of male and female mating types.
Sexual reproduction occurs in many small eukaryotes by fusion of similar gametes (isogamy). In the absence of distinguishable sperm and eggs, male and female mating types are missing. However, species with distinct males and females have so prospered that almost all familiar plants and animals have these mating types. Why has sexual reproduction involving sperm and eggs been so successful? An a...
متن کاملEvolution of Sexes from an Ancestral Mating-Type Specification Pathway
Male and female sexes have evolved repeatedly in eukaryotes but the origins of dimorphic sexes and their relationship to mating types in unicellular species are not understood. Volvocine algae include isogamous species such as Chlamydomonas reinhardtii, with two equal-sized mating types, and oogamous multicellular species such as Volvox carteri with sperm-producing males and egg-producing femal...
متن کامل